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Abstract Climate and infectious diseases each present critical challenges on a warming planet, as does the
influence of climate on disease. Both are governed by nonlinear feedbacks, which drive multi-annual cycles in
disease outbreaks and weather patterns. Although climate and weather can influence infectious disease
transmission and have spawned rich literature, the interaction between the independent feedbacks of these two
systems remains less explored. Here, we demonstrate the potential for long-lasting impacts of El Nifio—Southern
Oscillation (ENSO) events on disease dynamics using two approaches: interannual perturbations of a generic
SIRS model to represent ENSO forcing, and detailed analysis of realistic specific humidity data in an SIRS
model with endemic coronavirus (HCoV-HKU1) parameters. Our findings reveal the importance of considering
nonlinear feedbacks in susceptible population dynamics for predicting and managing disease risks associated
with ENSO-related weather variations.

Plain Language Summary Many infectious diseases are sensitive to environmental conditions, such
as temperature, precipitation, and humidity, and exhibit year-to-year variations in disease outbreaks. These
variations can be affected by interannual climate variability driven by the El Nifio-Southern Oscillation
(ENSO), as well as population immunity driven by previous outbreaks. This work models how these climate and
disease factors may interact, and finds that effects of ENSO on disease can grow in magnitude and last beyond
the duration of ENSO events due to the lasting effects of population immunity on infections. We also find that
consecutive ENSO events, which often occur in reality, may have amplified multi-year effects on infections.
These results motivate high-quality disease surveillance to more accurately estimate population immunity,
which supports better prediction of climate-related changes in infectious disease outbreaks.

1. Introduction

Climate and weather can drive infectious disease dynamics through several mechanisms. Temperature, precip-
itation, and humidity changes can influence the spread of vector-borne, water-borne, and airborne diseases
(Thomson, Grace, et al., 2018). Extreme weather events such as droughts, floods, and hurricanes can impact
disease transmission by affecting water quality, disrupting healthcare systems, or triggering human migration
(Mahmud et al., 2020).

The El Nifio-Southern Oscillation (ENSO) phenomenon is a well-known driver of infectious disease-relevant
weather variables across the globe. ENSO oscillates between warm phases (El Nifio) and cold phases (La
Nifia) approximately every 2—7 years (McPhaden et al., 2020). Its teleconnections with temperature, precipitation,
and drought have been hypothesized to affect the spread of several vector and waterborne diseases, including
cholera, dengue, malaria, hantavirus, plague, and Rift Valley fever (Anyamba et al., 2019). For example, during
the strong 2015-2016 El Nifio event, there were notable increases in disease activity in the Americas, southern
Asia, and eastern Africa, especially in the tropics (Anyamba et al., 2019).

The long-lead prediction capability of ENSO offers significant opportunities for disease forecasting. Unlike local
weather predictions, which typically span days to a week, ENSO events can often be forecasted several months in
advance (NOAA, 2024b). This advanced knowledge could facilitate seasonal health policy interventions such as
vaccination campaigns and vector control efforts (Anyamba et al., 2022; Thomson, Metcalf, & Mason, 2018). The
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potentially widespread geographic impacts of ENSO-related disease outbreaks also provide opportunities for
health resource management and international collaborations to mitigate disease risks (Anyamba et al., 2019).

Despite this opportunity, few successful public health interventions have been based on ENSO-disease forecasts.
One exception was early warnings of high Rift Valley fever (RVF) risk associated with the 2006-2007 EI Nifio
that led to increased vector and disease surveillance for 2-6 weeks before the first cases of the outbreaks in Kenya
and Tanzania (Anyamba et al., 2009, 2010). Even longer-lead early warnings allowed for preemptive livestock
vaccination campaigns to prepare for the impacts of the 2015-2016 EI Niflo, which likely prevented the RVF
outbreak that year (Anyamba et al., 2019).

The rarity of successful disease-forecasting applications may reflect an important barrier around ENSO-disease
interactions: the complex relationships potentially involved. Factors such as different disease sensitivities to
climate, geographical variations in ENSO's impact on weather, and the lag between ENSO events and disease
seasons can add complexity to ENSO-disease relationships (McGregor & Ebi, 2018). There is also evidence that
the relationship between ENSO and disease may be non-stationary, potentially due to ENSO's multi-decadal
variability or climate change; this was found to coincide with long-term variations in cholera outbreaks in
Bangladesh (Rodo et al., 2002).

Furthermore, several other factors can obscure the influence of ENSO on disease dynamics, such as local weather
variations, human behavior, healthcare interventions, vector ecology, changes in disease surveillance, and
background population immunity (e.g., Koelle et al., 2005; Martinez et al., 2017; McGregor & Ebi, 2018; Metcalf
et al., 2017; Pascual et al., 2000; Tian et al., 2022). Consequently, regional studies aiming to establish statistical
relationships between ENSO and disease have often produced mixed results (McGregor & Ebi, 2018). To better
understand the footprint on ENSO on disease transmission, mechanistic modeling approaches are likely
necessary.

Several mechanistic modeling studies have shown that population immunity can modulate the impact of ENSO
and other environmental drivers on disease dynamics. Although weather and climate variability have been found
to be important extrinsic drivers of disease, intrinsic disease dynamics are also significant, often with both adding
skill to disease predictions but differing in their dominance across contexts (e.g., Koelle et al., 2005; Laneri
et al., 2010; Pascual et al., 2008). Limitations in measurement of core quantities associated with infectious
diseases (e.g., underestimation of infection incidence as a result of asymptomatic infection, or a widespread lack
of measurement of immune status (Mina et al., 2020)) considerably enhance the value of mechanistic models to
provide critical insights into infectious disease dynamics (Ionides et al., 2006; King et al., 2008; Laneri
et al., 2010).

Despite these advances, the cumulative effects of experiencing consecutive climate anomalies and the temporal
extent of these impacts remain underexplored. Given ENSO's multi-year climate memory and the long-term
memory of immunity, the influence of ENSO on disease dynamics may be more predictable, complex, and
long-lasting than previously recognized. Furthermore, more research is needed on the interactions between ENSO
and respiratory pathogens, which have received less attention compared to waterborne and vector-borne diseases.
Studies have reported associations between ENSO and seasonal influenza (e.g., Flahault et al., 2004; Olu-
wole, 2015; Viboud et al., 2004), influenza pandemics (Shaman & Lipsitch, 2013), and viral pneumonia hos-
pitalizations (Ebi et al., 2001). However, many of these studies have been correlative and would benefit from
further mechanistic exploration.

In this study, we build on previous work (e.g., Koelle et al., 2005; Pascual et al., 2000, 2008) to explore potential
relationships between ENSO and infectious disease outbreaks using generalized mechanistic modeling ap-
proaches based on respiratory disease transmission. To move beyond the limitations of previous local-scale,
disease-specific studies, we develop a susceptible-infected-recovered-susceptible (SIRS) framework that
explicitly captures cycles of infection and recovery and can be adapted to simulate various climate-dependent
diseases. Our methodology involves two modeling approaches. First, we use an SIRS model with a seasonally
varying basic reproduction number (R,) that is interannually perturbed to investigate how the direct effects of
ENSO on R, and more indirect effects on the susceptible population impact disease spread, and how these vary for
different sequences of ENSO events. Second, we couple an SIRS model for an airborne disease, the endemic
coronavirus HCoV-HKU , with specific humidity reanalysis data from 1981 to 2017 to examine the influence of
ENSO-related humidity variations on disease transmission. This approach follows evidence of the specific
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humidity dependence of influenza and respiratory syncytial virus (RSV) (Baker et al., 2019; Lowen &
Steel, 2014; Lowen et al., 2007; Shaman & Kohn, 2009; Shaman et al., 2010).

The manuscript proceeds as follows: The methods section outlines our theoretical framework and modeling
approaches. In Part 1 of the results section, we discuss the findings from the idealized SIRS-ENSO model for a
seasonal disease, followed by Part 2 for a biennial disease. In Part 3 we present the results from an HCoV-HKU1
SIRS model forced by estimates of historical humidity (the MERRA-2/SIRS model), including global maps of
changes in infections associated with ENSO and a detailed analysis of the large impacts in northern Australia.
Finally, similarities between the results of both modeling approaches are discussed, particularly emphasizing the
multi-year effects of ENSO events on infections driven mainly by changes in the susceptible population.

2. Methods
2.1. SIRS Model and ENSO-Disease Theoretical Framework

The susceptible-infected-recovered-susceptible (SIRS) model underpinning our ENSO-disease models is defined
by the following equations:

ds

— = ER— BSI
G = CR-P
dI

— =pSI—yl
& pSI—y
S+I+R=1

where dS/dt is the time tendency of the susceptible fraction of the population, d//dt is the time tendency of the
infected fraction, R is the recovered fraction, £ is the rate of immunity loss, f is the transmission rate, and y is the
recovery rate (Keeling & Rohani, 2008). The basic reproduction number is given by Ry = f/y and represents the
contagiousness of a disease as the number of secondary infections expected to be caused by a single infection in a
completely susceptible population (Dietz, 1993).

The analysis is grounded in human coronavirus SIRS models due to their contemporary relevance and known
climate dependencies. These models neglect vital dynamics, as in Baker et al. (2020), but future work could
examine the full family of SIR models, which include births and deaths.

Figure 1 illustrates potential interactions between ENSO and infectious disease transmission through two
mechanisms. First, ENSO can induce changes in R, within a season or year via its teleconnections to weather.
These changes in R, could occur through several pathways related to temperature, precipitation, and humidity.
Second, if the immunity loss timescale of a disease is sufficiently long, the interannual variability of ENSO can
overlap with this timescale and indirectly affect multiple disease seasons by altering the susceptible population.
Successive ENSO events may have compounding impacts on disease outbreaks through this mechanism, with
potentially more complex impacts for biennial diseases than seasonal diseases.

Note that the ENSO cycle depicted in Figure 1 does not fully capture the irregular behavior of ENSO, as evi-
denced by the Oceanic Nifio Index (ONI) timeseries also presented. While it has been observed that La Nifia
events are often preceded by strong El Nifio events (Iwakiri & Watanabe, 2021), this pattern is not consistently
observed. It is not uncommon to skip the neutral state or have multi-year El Nifio or La Nifia events. The purpose
of this figure is to illustrate the potential multi-year dynamics of ENSO and its potential overlap with the im-
munity loss timescale as the ENSO state fluctuates.

2.2. Idealized SIRS-ENSO Model

To investigate potential impacts of ENSO on infectious disease outbreaks, SIRS models are perturbed with
idealized interannual ENSO forcing. Separate SIRS models are constructed to represent seasonal and biennial
disease dynamics. Seasonal disease dynamics are modeled by varying R, seasonally, while biennial dynamics
incorporate a longer immunity length and larger seasonal variations in Rj. The disease parameters for each
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Table 1

Disease Parameters Used for the Seasonal and Biennial SIRS Models
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Figure 1. Schematic of how infectious disease and El Nifio-Southern Oscillation (ENSO) memory may interact. Left: An
SIRS model with red parts indicating components that may interact with ENSO. Upper right: A typical ENSO progression
between the warm phase (El Nifio), cold phase (La Nifia), and neutral state. ENSO does not always behave according to this
sequence, but this sequence often occurs. Lower right: Oceanic Nifio Index (ONI) from 1981 to 2017, with red shading
indicating El Nifio events, blue indicating La Nifia events, and gray indicating the neutral state (NOAA, 2024a).

experiment are summarized in Table 1. These parameters were chosen without correspondence to a specific
disease.

The seasonal and biennial SIRS models are run with a daily time step. Before applying ENSO perturbations, the
models are spun up for 1,000 years to reach a stable attractor, though the models appear to stabilize within 20
(seasonal model) or 50 (biennial model) years. The interannual ENSO event-like perturbations to R, begin between
11 and 14 years after the 1,000-year spin-up period, depending on the number of ENSO events in the scenario.

To simulate the impact of El Nifio and La Nifla events, R, is respectively increased or decreased by 0.75 within the
boundaries of an ENSO event year and then is instantly returned to previous levels. Though this approach leads to
unrealistic discontinuities, its simplicity offers clarity as to the footprint of such effects. To test the effects of
consecutive ENSO events, we simulate various sequences including a single El Nifio or La Nifia event, one El
Nifio preceded by one and three La Nifia events, and one La Nifia preceded by one and three El Nifio events. Note
that the sequence of three El Nifio events directly preceding a La Nifia has not occurred in the real world in the
modern ENSO record, but it is included for completeness.

To investigate how the timing of ENSO perturbations relative to the seasonal cycle of R affects disease dynamics,
we conduct two sets of experiments where the idealized ENSO perturbations are applied at different times in the
year. The standard version aligns the start time of ENSO events = when R, is near its average value and is
increasing seasonally, and a 6-month shifted set of experiments offset the start of the ENSO perturbations
6 months later, when R is near its average value and decreasing seasonally.

It is important to note that potential impacts of ENSO on R, likely vary in
sign, amplitude, and lag time across locations, and this idealized model
simulates a subset of these possibilities. In the idealized model setup we chose
to associate higher R, with El Nifio and lower R, with La Nifia because a

strong signal with the same sign emerged in Australia in the MERRA-2/SIRS

seaonl uiett LSz ntl et model (Figure 2), where El Nifio is associated with drier conditions and La
Immunity length (1/¢&) 500 days 3 years Nifia with wetter conditions. Reversing the sign of this relationship would
Infection period (1/y) 10 days yield the same results except “La Nifia” and “El Nifio” would be reversed. The
Baseline R, 3 standard-timing version of the experiments is also similar to the timing of the
Seasonal R, variation amplitude 0.75 L5 ENSO-related R, changes in Australia in t.he MERRA-2/SIRS model, but they
are not exactly the same because lag times of effects of ENSO on local

ENSO kick to Ry 0.75 o )
weather can vary from event to event. The purpose of this simplified model is
CHUNG ET AL. 4 of 15
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HCoV-HKU1 climate dependence
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Figure 2. MERRA-2/SIRS model methodology and El Nifio composites. Left: Prescribed dependence of R, on specific humidity (¢) based on previous studies. Center/
Right: El Nifio composites of specific humidity and R, shown as the October-November-December average anomaly from the monthly climatology.

not to represent a particular location, but rather to explore how ENSO-driven interannual variations in R, affect
infections and susceptibles, to help interpret the behavior of a more complex system.

2.3. MERRA-2/SIRS Model

To more realistically explore the relationship between ENSO and disease spread, an SIRS model is forced with
historical weather data via specific humidity. We use the climate-dependent transmission and immunity length
parameters for HCoV-HKU1, estimated in Baker et al. (2020) by fitting an SIRS model to HCoV-HKU1 case data
from the United States (CDC, 2020) while keeping all other parameters fixed based on values from Kissler
et al. (2020). The relationship between specific humidity and Ry based on these parameters is shown in Figure 2.
The immunity length (1/&) is 66.25 weeks, and the infection period (1/7) is 5 days.

Although climate drivers are likely to have broadly consistent effects on transmission for specific infections,
differences in other drivers of transmission such as human behavior mean that applying disease model parameters
derived from one country to the entire globe is unrealistic. However, our aim is not to provide an accurate forecast
of disease incidence in a particular setting, but rather to explore potential interactions of population immunity
with interannual climate forcing. Accordingly, to isolate potential effects of ENSO while avoiding complications
related to local disease dynamics and human behavior, we apply the same disease model over all locations.

The SIRS model is forced with weekly mean 2 m specific humidity data with global coverage from the re-analysis
data set Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) produced by
NASA's Global Modeling and Assimilation Office (Gelaro et al., 2017). The SIRS model is initialized with 1
infection per 100,000 people and the remaining fraction of the population as susceptible. The model is stepped
forward using a 4th order Runge-Kutta discretization. We “spin up” the disease model by forcing it with 20 years
of repeated weekly MERRA-2 climatology, which was averaged over the years 1980-2018. The infected and
susceptible fractions at the end of the spin-up are the initial conditions for the model run that is ultimately
analyzed, which is forced with the MERRA-2 specific humidity data from 1981 to 2017.

The model is not very sensitive to the length of the climatological spin-up period, as it stabilizes after a few years
for these parameters. We also investigated whether a 21-year spin-up period would affect regions with biennial
disease, but there was very little difference, providing evidence that the 1981-2017 run is being strongly forced by
the MERRA-2 data.

ENSO event years between 1981 and 2017 are determined based on the Oceanic Nifio Index (NOAA, 2024a). The
ONl s a timeseries of 3 months running mean sea surface temperature anomalies in the Nifio 3.4 region (5°N-5°S,
120°-170°W), where anomalies are computed relative to a 30-year base period updated every 5 years. El Nifio
and La Nifia events are determined when the ONI exceeds 0.5°C or falls below —0.5°C, respectively. Calendar
years ending during El Nifio events are classified as El Nifio years (1982, 1986, 1987, 1991, 1994, 1997, 2002,
2004, 2006, 2009, 2014, 2015; 12 years total), while those ending during La Nifia events are categorized as La
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Seasonal SIRS model
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Figure 3. SIRS model response to El Nifio-Southern Oscillation (ENSO) perturbations for El Niflo and preceding 1 or 3 La Nifa events (left) and La Nifia and preceding

1 or 3 El Nifio events (right). All the models have seasonally varying R, with no interannual perturbations to the attractor (gray), and with simulated El Nifio (pink
shading) and La Nifia events (blue shading) as a 1-year R, increase or decrease from the seasonally varying baseline, respectively. Darker shading indicates the overlap in
timing between the 1 and 3 preceding-event scenarios. Quantities shown over time are R, infected fraction, infected fraction annual anomaly from the attractor as the
difference in peak height (X ) and annual sum divided by 12 (bars), and susceptible fraction. Colors for the infected annual anomalies correspond to the ENSO event
scenarios with line plots of the same color. Left: One El Nifio event (red solid line), La Nifia followed by El Nifio (purple dashed line), and three La Nifia events followed by
El Nifio (blue dotted line). Right: One La Nifia event (blue line), El Nifio followed by La Nifia (purple dashed line), and three El Nifio events followed by La Nifia (red
dotted line). Time shown in years after 1,000-year spin-up.

Nifia years (1983, 1984, 1988, 1995, 1998, 1999, 2000, 2005, 2007, 2008, 2010, 2011, 2016, 2017; 14 years). All
other years are considered neutral years (11 years).

This classification follows the common practice for computing ENSO composites, where the first year (year 0) is
counted as the calendar year during which the ENSO event ramps up in the Boreal Fall, and the event tends to
extend into the next year (year +1) (Harrison & Larkin, 1998; Larkin & Harrison, 2005; Rasmusson & Car-
penter, 1982). Some results also show the following year (year +2), which may coincide with the continuation of
the original ENSO event or a different ENSO state.

3. Results
3.1. Seasonal SIRS Model

Figure 3 illustrates how various sequences of idealized ENSO events affect the evolution of an acute seasonal
disease. A single El Nifio leads to an increase in infections and a decrease in susceptibles during that year.
Interestingly, the response of the dynamical disease system to this perturbation leads to a comparable or even
larger magnitude impact the year after the El Niflo; the infection peak height decreases due to the reduction of the
susceptible population during the El Nifio the prior year. The effect of a single La Niifia event is opposite, with
suppressed infections during the La Nifia causing susceptibles to build up, which leads to a larger infection peak
the year after the La Nifia. The interplay between susceptibles and infections causes the effects of the ENSO-
related perturbations to last for multiple additional years, shown by the infected fraction anomaly from the
attractor, despite R, returning to its usual seasonal variations.
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Figure 4. Left: Infected fraction for all seasonal SIRS models with El Nifio-Southern Oscillation (ENSO) perturbations, with attractor in gray. (a) For experiments
including El Nifio and El Nifio preceded by 1 or 3 La Nifia events, (b) as (a) but for ENSO perturbations shifted 6 months later, (c) for experiments including La Nifia and
La Niia preceded by 1 or 3 El Nifio events, (d) as (c) but for ENSO perturbations shifted 6 months later. Right: Seasonal ENSO-SIRS model results for simulated ENSO
sequences during model years 11-18 relative to the attractor, as a percentage of that metric for the attractor. Metrics shown are (e) annual sum of infected fraction (red)
and susceptible fraction (yellow) and (f) maximum peak infection height. +6 indicates experiments where ENSO perturbations were shifted 6 months later. Experiments
are ordered left to right in the general order of negative to positive net R, perturbations, where LN indicates La Nifia and EN indicates El Nifio, and the numbers indicate
the number of events.

Figure 3 also shows how the impact of El Nifio or La Nifia can differ when other ENSO events precede that event.
For El Nifio events preceded by La Nifia, susceptible buildup causes an even higher infection peak during the El
Nifio than if the El Niflo event had existed alone. For La Nifia events preceded by El Nifio, the opposite occurs.
The preceding El Nifio drains the susceptibles, leading to an even lower infection peak during the La Nifia, and a
larger rebound in infections the year after the La Nifia. In the cases with three La Nifia events preceding an El Nifio
or three El Nifio events preceding La Nifia, the effects are similar and sometimes greater, and can be more
complex due to the longer perturbation timescale interacting with the infections and susceptibles. Regardless of
the sequence of ENSO events, there are substantial multi-year effects due to lagged effects of susceptible supply
on infections.

In addition to changes in peak height, there are shifts in the timing of the infection peaks across these ENSO event
scenarios. Across all the experiments, infection peaks shift earlier during El Nifio, when R, is high and increasing
with seasonality. Infection peaks tend to shift later than usual when Ry is low, as during La Nifia, because there is a
delay in susceptibles growing high enough to enable an outbreak. The infection annual anomalies also show how
peak height and annual sum anomalies tend to match in sign and magnitude, but not always. For example, in the 3
El Nifio 1 La Nifia scenario, there is a lower infection peak height but a higher annual sum of infections due to
more off-peak infections.

The effects of ENSO in the standard timing experiments (Figures 4a and 4c) differ from the 6-month shifted
experiments (Figures 4b and 4d; Figure S1 in Supporting Information S1) due to the difference in timing of the
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ENSO events relative to the seasonal cycle of R and susceptible fluctuations. In the standard timing experiments,
ENSO-related R, changes align with increasing seasonal R, and high susceptibles. This primes these models to
have large outbreaks during El Nifio since all three factors align to enhance infections. In contrast, in the 6-month
shifted experiments, ENSO events begin as Ry is seasonally decreasing and susceptibles are low. This primes La
Nifla to have a large and long-lasting infection suppression effect. This is demonstrated especially in the 6-month
shifted 3 La Nifia 1 El Nifio experiment, where one infection peak is extremely low and delayed.

For La Nifa in the standard experiments and El Nifio in the 6-month shifted experiments, the ENSO-related
changes in R, are opposed by the seasonal change and susceptible supply, so their effects are subdued. In the
standard timing experiments, though La Nifia does suppress infections, it is not to the same extent as the 6-month
shifted experiments. In the 6-month shifted experiments, El Nifio is actually associated with smaller outbreaks
compared to the attractor. This is because the effect of El Nifio on infections does not emerge until the latter half of
the event, when R is seasonally peaking. At that point, susceptibles are at a moderate level which allows an early
outbreak, but the outbreaks are small because the susceptibles have not had time to fully build up. The only
exception is the 1 La Nifia 1 El Nifio experiment, which has a large infection peak during El Nifio due to the
preceding La Nifia delaying the peak and causing susceptibles to be high going into the El Nifio.

The 6-month shifted experiments tend to have earlier outbreaks due to El Nifio and later outbreaks due to La Niiia,
similar to the standard timing experiments. The exception is the 3 La Nifia 1 El Nifio experiment, where the very
low infection peak leads to large susceptibles buildup and an early outbreak during the next La Niiia.

Figures 4e and 4f summarize how the different ENSO event scenarios impact key measures for infection totals
and peak height relative to the attractor, as a percentage of that measure in the attractor. These measures are
computed over model years 11-18 because this period encapsulates when the longest ENSO event sequences (i.e.,
four total events) deviate from the attractor.

Figure 4e shows the annual sum of infections and susceptibles for each ENSO experiment relative to the attractor.

For a given variable X, this is computed as:

Sum(Xyear=l 1-1 8) - Sum(Xauraclor)

sum(Xyuractor)

% change in annual sum = [

]* 100 1)

Figure 4f compares the highest infection (1) peak height during each ENSO experiment to the attractor and
expresses it as a percentage of the attractor peak height, as in the formula below:

max(lyear=l 1-1 8) - max(la

max(Zyracior)

% change in highest infection peak = [ wacor) ] %100 2

If no infection peak height exceeds the attractor peak height for a given scenario, then the value is zero, because
the disease returned to the attractor. This metric could be of interest for public health officials because it indicates
whether a given ENSO scenario could lead to an unusual surge in infections which may exceed healthcare system
capacity.

The annual sum metric (Figure 4e) shows a cleaner picture than the maximum peak height metric, which is
perhaps unsurprising because the annual sum is computed over several years rather than a singular value. There is
little difference between the standard and 6-month shifted experiments in the annual sums. El Nifio tends to
increase the sum of infections and La Nifia tends to decrease the sum of infections, which is expected due to our
model setup of El Nifio increasing R, and La Nifia decreasing R;.

Interestingly, the magnitude of La Nifia's suppression of the annual sum of infections appears to be larger than the
increase from El Nifio. This asymmetry may be explained by how susceptible supply limits the ability of the El
Nifio events to increase infections. When R, increases, especially over multiple years, susceptibles drain and lead
to smaller outbreaks. During La Niila, although outbreaks occur due to susceptible buildup, the low R, causes
infection peaks to be consistently low. This reveals a key nonlinearity about this system; under symmetric
changes to Ry, R, increases are limited in their impact on infections due to low susceptible supply, whereas R,
decreases can suppress infections more effectively.
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Table 2

Summary of Biennial SIRS Model Behavior for Different El Nifio-Southern Oscillation (ENSO) Perturbation Experiments
La Nifia — El Nifio El Nifio — La Nifna

Returns to original attractor 1 El Nifo None

1 El Nifio +6 months
3 La Nina 1 El Nifio +6 months
Moves to offset attractor 1 La Nina 1 El Nifo 1 La Nina
1 La Nifia +6 months

1 La Nifa 1 El Nifio +6 months 1 El Nifio 1 La Nifia
1 El Nifio 1 La Nifia +6 months
3 La Nifia 1 El Nifio 3 El Nifio 1 La Nifia

3 El Nifio 1 La Nifia +6 months

The maximum infection peak height changes are more complex (Figure 4f). Large infection peaks can result from
a combination of various factors, such as high background R, high susceptible fraction, and optimal timing of R,
increases due to El Nifio. Most of the 6-month shifted experiments (except 1 La Nifia 1 El Nifio) result in no or
little increase in the maximum infection peak height, probably due to the previously discussed opposition between
the R, increase from El Nifio and the decreasing seasonal R, and low susceptibles.

The rest of the experiments experience maximum infection peak height increases greater than 20% of the attractor
peak height. The maximum infection peaks all occur the year after a La Nifia event, whether during El Nifio or in
the neutral state (Figure 4). The La Niiia to El Nifio transition seems particularly powerful, as the 1 La Nifia 1 El
Nifio scenarios experience the largest increase in infection peak height compared to the other experiments. The La
Nifia to El Nifio transition is accompanied by the largest increase in R;. However, what distinguishes the 1 La
Nifia 1 El Nifio scenarios from the 3 La Nifia 1 El Nifio scenarios is that the former builds up susceptibles and loses
them to infections in a shorter amount of time (Figure 3; Figure S1 in Supporting Information S1). In 3
consecutive La Nifia events, susceptibles may oscillate more and deplete before the La Nifia-El Nifio transition,
leading to smaller peaks (e.g., 6-month shifted 3 La Nifia 1 El Nifio experiment).

In summary, these results indicate that even for a very stable seasonal disease, ENSO can have multi-year impacts
on infections by setting off multi-year changes in susceptibles. These results are consistent with previous studies
that show how ENSO's influence on infections interplays with nonlinear susceptible dynamics (e.g., Koelle
et al., 2005; Pascual et al., 2000, 2008). Additionally, these results demonstrate how the effects of consecutive
ENSO events on infections can be more pronounced and complex than for single ENSO events. The impacts of
these simulated ENSO perturbations can be asymmetric for El Nifio versus La Nifia, and are nonlinear in their
effects on infection peak amplitude. The timing of the ENSO perturbation to R, relative to the seasonal changes in
Ry also produces substantially different results.

3.2. Biennial SIRS Model

Figures S2-S4 in Supporting Information S1 show the impacts of simulated ENSO perturbations to R, on a
biennial disease. The only differences between the biennial and seasonal model are that the biennial model in-
corporates a longer immunity length (3 years) and double the amount of seasonal R, variability. The ENSO
perturbation scenarios tested are the same as for the seasonal disease. R, infected fraction, infected fraction
annual anomalies, and susceptible fraction are shown for the standard timing experiments (Figure S2 in Sup-
porting Information S1) and the 6-month shifted experiments (Figure S3 in Supporting Information S1).

In biennial disease models, stable peaks occur every 2 years. Perturbations to these systems may cause outbreaks
to shift earlier or later than expected, and afterward when the system re-establishes its 2-year periodicity, the
system may stabilize either to the original attractor or a new biennial cycle offset by 1 year. The biennial SIRS
ENSO experiments in this study yield both outcomes (Figure S4 in Supporting Information S1), which are
summarized in Table 2. All the ENSO sequences that end with La Nifia move to the new attractor, whereas only
some of the sequences that end with El Nifio do. We hypothesize that ending with a La Nifia event suppresses
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infections long enough to shift to the new attractor. Depending on the timing of the perturbation, El Nifio appears
to shift peaks earlier resulting in a 1-year offset or keeps the disease timing aligned with the original attractor.

Figure S4 in Supporting Information S1 shows the annual sum and maximum infection peak anomaly from the
attractor as a percentage of the attractor for the biennial disease experiments. These are computed the same way as
for the seasonal disease (Equations 1 and 2), but the computation period is years 11-22 for the biennial disease.

The infected and susceptible annual sums for the biennial disease (Figure S4e in Supporting Information S1) have
some similarities to the seasonal disease (Figure 4e). While the magnitude and sign of the ENSO perturbation-
related changes in annual sum differ for some experiments, the tendency of La Nifia events to reduce in-
fections (increase susceptibles) and El Nifio events to increase infections (decrease susceptibles) is still present.
The more substantial effect of La Nifia compared to El Nifio is even more pronounced in the biennial disease, as
every experiment that includes a La Nifia event has a decrease in the sum of infections compared to the attractor.
We posit that because the biennial disease has longer times between peaks, the ability of the La Nifia perturbations
to suppress infections and build up susceptibles is more pronounced than in the seasonal disease.

The maximum infection peak anomalies are positive in all the biennial disease experiments (Figure S4f in
Supporting Information S1), including the 6-month shifted experiments. This is in contrast to the seasonal disease,
where the 6-month shifted experiments did not have as much peak growth (Figure 4f). There is generally more of
an increase in the scenarios with La Nifia events, with the largest infection peak increase in the 3 La Nifia 1 El
Niflo experiment due to very high susceptibles buildup; however, the same experiment shifted by 6 months does
not have as much growth in infections, again indicating the importance of the timing of the ENSO perturbation.
Still, it is important that both El Nifio and La Nifia lead to an increase in infection peak height, either at zero lag or
eventually, in the biennial model (as well as most of the seasonal disease experiments).

3.3. MERRA-2/SIRS Model: HCoV-HKU1

In the MERRA-2/SIRS model, specific humidity data from 1981 to 2017 determines R, in an SIRS model using
parameters from HCoV-HKU1, a human coronavirus (Figure 2). Figure 5 shows how infection peak amplitude
and the annual sum of infections are impacted by ENSO phase (El Nifio vs. La Nifia) as well as the multi-year
impacts of El Nifio and La Nifia (composite year +1 vs. year 0). Note that these maps are not weighted by
population; spatial heterogeneity arises from geographic differences in ENSO teleconnections and specific hu-
midity seasonality influencing infections. Composite year +2 is also compared to year +1 for El Nifio and La
Nifia in Figure S5 of the Supporting Information S1, because most locations in the northern hemisphere tend to
have climatological infection peaks earlier in the calendar year, so the first infection peak eligible to be influenced
by ENSO events would occur in ENSO composite year +1.

The impact of El Nifio versus La Nifia on the infection peak height relative to the seasonal variation in infections
(Figure 5a) is significant in several regions, including northern Australia, South America, equatorial Africa, and
Russia. The difference in infection peak height between El Nifio year +1 and year 0 (Figure 5b) is also significant
in these locations and northwestern Canada. For La Nifia year 4+1 compared to year O (Figure 5c¢), the effects are
more geographically restricted, with northern Australia being particularly impacted, and some parts of South
America and western Canada. Differences in infection peak height over 100% of the climatological seasonal cycle
of infections are present, especially in Australia.

The impacts of El Nifio versus La Nifia on the annual sum of infected fraction relative to the climatological annual
sum (Figures 5d—5f) generally match the sign of the impacts on infection peak, and more regions emerge as
significantly different. The most prominent changes are again in northern Australia. Other significant changes
occur in South America, equatorial and east Africa, the Middle East, southeast Asia, western Canada, and Russia.

The larger differences between year +1 and year O for El Nifio (Figures 5b and 5e) compared to the same for La
Nifia (Figures 5c and 5f) is likely because El Nifio events during this period are often directly followed by La Nifia
events, whereas La Nifia events are often followed by a neutral year, resulting in less contrast. Similar results
occur when year +2 is compared to year +1 (Figure S5 in Supporting Information S1), and may be explained for
the same reason for locations where there is a lag between ENSO events in year 0 and infection peak timing in
year +1 (most of the Northern Hemisphere). In regions where there is not as much of a lag between ENSO and
infection peak timing (most of the Southern Hemisphere), there are still differences between the year +2 and year
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Figure 5. Left: Global maps of differences in infection peak values as a percent of the seasonal variation of infections for an average year (1981-2017). Right:
Differences in the annual sum of infections as a percent of the annual sum of infections for an average year (1981-2017). Differences are computed at each individual
location for (top row) El Nifio minus La Nifia, (middle row) EI Nifio year +1 minus El Nifio year 0, and (bottom row) La Nifia year +1 minus La Nifia year 0. Gray dots
indicate significant difference between the means of the two compared data sets at the 95% confidence level. Note that these maps are not weighted by population.
Results for El Nifio-Southern Oscillation (ENSO) composite year +2 minus year +1 is shown in Figure S5 of the Supporting Information S1.

+1 composites, highlighting a significant effect of ENSO events that lasts for 2 years. These 2-year effects are
found in northern and eastern Australia, southeast Africa, and parts of South America and Canada.

Since northwestern Australia stands out globally as a location where ENSO impacts infections for all metrics
shown and through ENSO composite year +2, this location is examined further. The data shown in Figure 6 are
retrieved from a single location in northwestern Australia but are qualitatively similar across the region. Figure 6
shows composites of Ry, infected fraction, and susceptible fraction during El Nifio and La Nifia events, and one
and 2 years later, compared to the average of all years (climatology). Composites for Neutral years (not shown)
are similar to the climatology but not exactly the same, likely because Neutral composite years +1 and +2 often
occur during El Nifio or La Nifia.

In northwestern Australia, El Nifio is associated with higher R, leading to higher infections and therefore lower
susceptibles, and La Nifia is associated with the opposite. As was shown in the global plots, the differences in
infection peak amplitude and overall number of infections associated with ENSO events is large in this region
compared to the climatology.

The multi-year impacts of ENSO events on infections are evident, especially the multi-year role of susceptibles.
At this location, impacts of El Nifio versus La Nifia on infections are stronger in composite year +1 and +2 than
during the year of the ENSO event. During composite year +1, the difference in infections between El Nifio and
La Nifia may be explained by both the difference in R, and a difference in susceptibles, though high susceptibles
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Figure 6. Composites of disease parameters from a location in northwestern Australia (128°E, 18°S) for El Niiio (red), La Nifia (blue), and the average of all years (black
dashed). Ry, (top row), infected fraction (middle row), and susceptible fraction (bottom row) are shown for year 0 of the El Nifio-Southern Oscillation (ENSO) event, 1
and 2 years after the ENSO event. Shading indicates the 95% confidence intervals for El Nifio (pink) and La Nifia (light blue).

also drive off-peak infections during the transition from La Nifia composite year 0 to +1 and EI Nifio composite
year +1 to +2. During year +2, R has essentially returned to its climatological values while differences in
susceptibles persist, driving a large and earlier infection peak in year +2. These results suggest a large role of
susceptible supply for determining infections even 2 years after an ENSO event in this location.

Note that the infections in this location in northwestern Australia are not biennial (see timeseries in Figure S6 of
the Supporting Information S1). The biennial peak structure in Figure 6 is associated with the ENSO events, not
the baseline disease dynamics.

The same plots are shown for a location in Rondonia, Brazil, which also showed up as significant on the maps in
Figure 5 and where La Nifia and El Nifio are associated with the opposite sign of changes in R, (Figures S7 and S8
in Supporting Information S1). Though this location is less dramatically affected by ENSO and has shallower
disease peaks than northwestern Australia, the multi-year role of susceptibles is also evident in this location, even
when R, has returned to its climatological values during composite year +2. Much of the El Nifio-La Nifia in-
fections difference here occurs during the off-peak season, affecting the infection sum rather than the peak height,
and demonstrating how ENSO's impacts may differ in locations with different underlying disease dynamics.

4. Discussion and Conclusions

The responses of seasonal and biennial SIRS models to idealized ENSO perturbations, along with the ENSO
composites for HCoV-HKU1 in the MERRA-2/SIRS model, reveal the potential impacts of ENSO on climate-
driven infectious diseases with immunity length greater than 1 year. Both the idealized and weather data-
based modeling approaches suggest that ENSO can exert multi-year effects on disease dynamics due to lagged
changes in susceptibles, which is consistent with previous studies (e.g., Koelle et al., 2005; Pascual et al., 2008).

A major finding across all the models is that both El Nifio and La Nifia can be associated with increases in
infection peak height, either during the event or at a lag due to susceptibles buildup. This implies that
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interventions to offset the growth in susceptibles (e.g., immunization) could significantly help avoid major spikes
in infections. We also found several instances of outbreaks shifting earlier or later, and understanding these
dynamics better may help inform the timing of interventions. Additionally, our results repeatedly found larger
effects of ENSO on infections a year or more after the ENSO events, implying that understanding ENSO-disease
relationships requires accounting for susceptible dynamics.

Our findings also highlight the importance of considering how consecutive ENSO events may impact susceptibles
and infections rather than focusing solely on a single ENSO event. A potential application of this finding could be
when ENSO-sensitive disease outbreaks vary in size for ENSO events of similar magnitude. Different population
immunity levels likely drive these differences (e.g., Pascual et al., 2008), therefore for diseases with long im-
munity timescales, the effects of preceding consecutive ENSO events on susceptibles may be worth considering.
This complexity suggests that disease data and analysis must encompass various sequences of ENSO events to
fully grasp how ENSO may affect disease dynamics, motivating multi-decadal data collection.

The impacts of ENSO on infections were also sensitive to the underlying disease dynamics and timing of the
ENSO-associated change in Ry relative to seasonal changes in R,. This could explain some ENSO sensitivity
differences across different locations in the MERRA-2/SIRS model. Future work could group locations with
similar disease dynamics (e.g., seasonal, biennial, shallow peaks) or based on the timing of their climatological
infection peaks relative to ENSO-induced changes in R, and investigate the multi-year impacts of ENSO on each
group in further detail. Our results also motivate better simulation of the seasonal phase-locking of ENSO and its
teleconnections in climate models and projections.

An intriguing result from the idealized models is the asymmetry between El Nifio and La Nifia events, with La
Nifia events having a more pronounced effect in reducing disease burden compared to El Nifio events increasing
it. This warrants further exploration, although caution is advised when using real-world data due to potential
confounding factors, such as differing sequences of ENSO events.

It is crucial to recognize the limitations of modeling when attempting to bridge the gap between simulated
outcomes and real-world scenarios. Although nearly 40 years of data were used in the MERRA-2/SIRS model,
considerable variability was observed between ENSO events, likely because they are diverse in their strength,
timing, character, and teleconnections. Future work could investigate how extreme and moderate ENSO events,
east and central Pacific El Nifio events, and variations in ENSO teleconnections might influence disease dynamics
differently, possibly leveraging global climate models to gain a larger sample, if the teleconnections are well-
represented.

Factors such as human behavior, healthcare interventions, and weather patterns unrelated to ENSO can also mask
the effects of ENSO on disease dynamics. Also, the details of the relationship between specific humidity and R,
upon which the MERRA-2/SIRS model relies is based on United States HCoV-HKU1 data and may be modulated
by local context. Future work aimed at more realistic simulation of disease spread should account for these
potential geographic differences in disease dynamics.

These results present several intriguing avenues for future research. The choice to model a respiratory disease in
the MERRA-2/SIRS model was motivated by the strong seasonality and humidity dependence commonly
associated with such diseases (Baker et al., 2019; Lowen & Steel, 2014; Lowen et al., 2007; Shaman &
Kohn, 2009; Shaman et al., 2010). Although airborne diseases have not been as much of a focus of ENSO-disease
research compared to vector and water-borne diseases, this study's findings suggest the potential importance of
multi-year effects of ENSO and different ENSO event sequences for airborne diseases. This motivates more
nuanced temporal investigation into the impact of ENSO on airborne diseases and may be relevant for other types
of environmentally influenced diseases with long immunity timescales. Additionally, this study leveraged the
SIRS framework. Given the assumed short duration of immunity, this model is a reasonable approximation of
recurrent epidemic dynamics. However, the impact of ENSO on the full family of SIR models (with births/deaths)
should be investigated in future research (e.g., Keeling & Rohani, 2008).

Changes in ENSO associated with anthropogenic climate change or multi-decadal variability introduce uncer-
tainty into ENSO-disease relationships. Climate models could offer insight into these potential shifts, although
careful consideration is warranted regarding the realism of ENSO changes in these models. Additionally, pop-
ulation distribution and demographic changes, which were ignored in this study, play a crucial role in
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understanding vulnerability to disease. Overlaying population data onto ENSO-disease forecasting models could
help identify regions most vulnerable to ENSO-related disease outbreaks.

This study's findings also have several implications for ENSO-disease forecasting. While documenting in-
fections, vaccination status, and estimating susceptible populations are challenging tasks, understanding ENSO
teleconnections to different regions offers a more straightforward opportunity based in climate physics rather than
human behavior. To understand the interaction between ENSO and disease, it is imperative to consider the se-
quences of ENSO events, not only individual events. If these climate and disease interactions become well-
understood, interventions could be planned several months in advance, leveraging the multi-month lead time
of ENSO forecasting and the multi-season changes in population immunity.
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